

Emerging Business Models for Commercial Spaceports: Current Trends from the US Perspective

Janet K. Tinoco, Ph.D. and Chunyan Yu, Ph.D.

Embry-Riddle Aeronautical University Daytona Beach, Florida USA

SIRIUS Research Workshop Toulouse, France 13 October 2016


The Business of Flight®

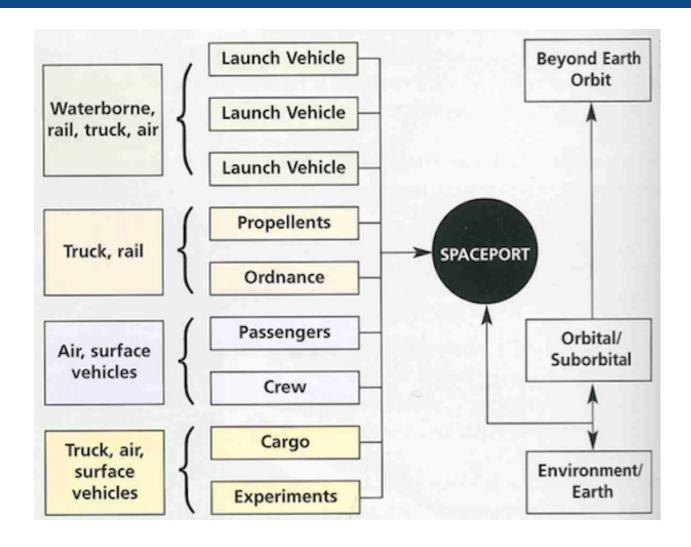
Agenda

- US commercial/government active launch sites
- Why commercial spaceports?
- Spaceport business model drivers
- Spaceport multi-modal facility and infrastructure requirements
- Emerging spaceport business models
- Summary and concluding remarks

Commercial/ Government Active Launch Sites

Why Commercial Spaceports?

- National space centers are expanding commercial space programs.
- Commercial spaceports developing as commercial space transportation activities grow
- Commercial space transportation activities include
 - Payload and International Space Station (ISS) crew transportation
 - Shift for federal government from launch service provider to customer
 - Space travel and tourism
 - Space mining (ex. planetary resources/asteroid mining)
- Methods of transport
 - Point-to-point (ex. Virgin Galactic)
 - Single point launch and return
 - Single point launch (ex. SpaceX and Mars)


Spaceport Business Model Drivers – Interrelated

- Shifting US government role
- Expansion of commercial transportation activities
- Enabling legislation tied to commercial space: local, state, and federal laws and policies
- Funding availability for spaceports
- Type of vehicle launch and return

 horizontal or vertical
- Airspace and jurisdiction
- Physical infrastructure and feasibility of adding/building infrastructure for spaceport
- Multimodal transportation access for spaceport activities
- Environmental impacts natural, population
- Market opportunities
- Economic benefit to the community

Spaceport – Multimodal Transportation Facility

Spaceport Infrastructure Requirements – Safety is Paramount

- Infrastructures for vertical and horizontal launch and landing
 - Launch pads and landing pads
 - Runways (>/= 12,000ft), taxiways and ramp areas
- Mission control centers
- Air control towers
- Hangars
- Storage areas (fuel/oxidizers)
- Payload integration facilities
- Emergency facilities
-

Emerging Spaceport Business Models

- Airports to air and space ports
 - General aviation (GA) and commercial, former/current military airfields
 - Examples: Cecil Spaceport, Mojave Air and Space Port, Midland Air and Space Port, Houston Spaceport at Ellington
 - Integration of current airport operations and infrastructures
- Greenfield spaceports
 - Examples: Spaceport America; Blue Origin-West Texas (private); Space
 X- Brownsville, Texas (private)
- National space and military centers
 - Examples
 - Wallops Flight Center/Mid-Atlantic Regional Spaceport (MARS)
 - NASA Kennedy Space Center/Cape Canaveral Air Force Station

Cecil Spaceport Jacksonville, FL

Cecil Spaceport Business Model

 Jacksonville Aviation Authority granted a launch site operator license in January 2010

Cecil Airport - GA airport, formerly military airfield

Launch type - departing Cecil Spaceport as an aircraft – horizontal

Short term: launch and reentry horizontally launched reusable launch vehicles (RLVs) using suborbital trajectories

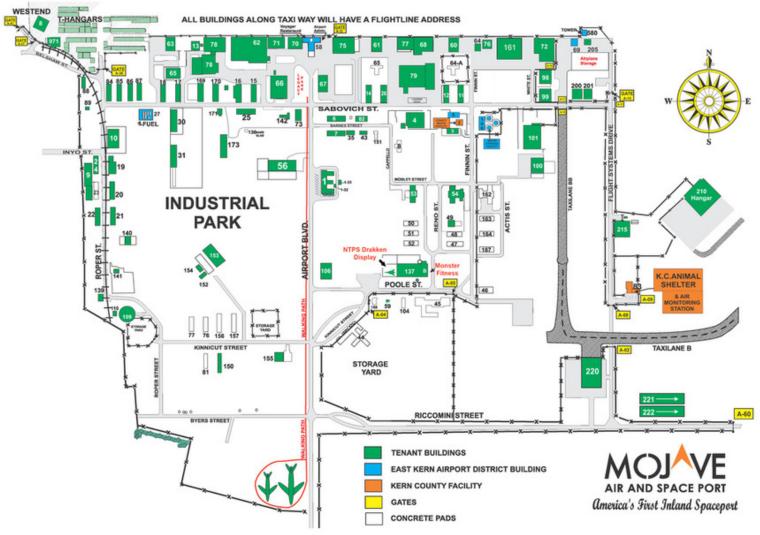
Long term: point-to-point transportation

 Assumptions: +250 flights annually within 20 years from the commencement of commercial operations if obtain 10% of commercial space operations market.

Revenues and Cost Estimates for Infrastructure Improvement

- Revenues (assumption)
 - Launch fees
 - Fixed based operator (FBO) type services
 - Lease agreements: Current lease tenants for Cecil Airport include Boeing Global Services and Support; none directly tied to the spaceport.
- Early stages of infrastructure conversion to spaceport
- Initial cost estimates for physical infrastructure improvements
 - Short Term (2012-2016) \$21.9M Road, utilities, operator sites construct
 - Medium Term (2017-2021) \$17.8M Taxiways –construct/reconstruct
 - Long Term (2022-2031) \$48.6M Reconstruct runway/construct visitor center
 Total \$88.3M
- Funding Sources
 Jacksonville Aviation Authority; State of Florida; Federal

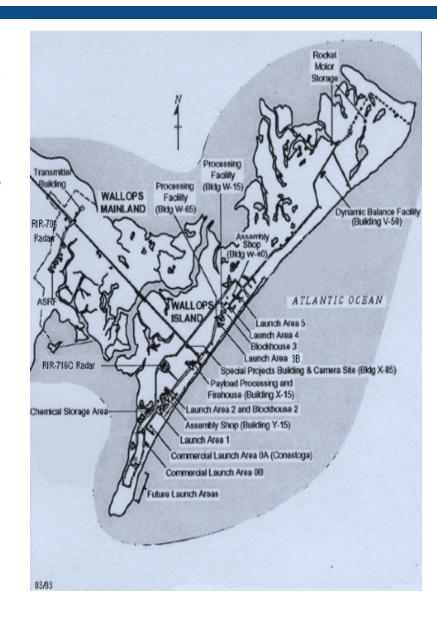
Mojave Air and Space Port



Mojave Air and Space Port Business Model

- First facility to be licensed in the United States for horizontal launches
 of reusable spacecraft. Certified as a spaceport by FAA on June 17,
 2004—East Kern Airport District.
- Broad business model
 - Main Tenants: XCOR Aerospace, Masten Space Systems, Virgin Galactic, The Spaceship Company, Stratolaunch Systems, Firestar Technologies, Orbital Sciences Corporation and Interorbital Systems
 - 51% of the revenue generated at Mojave Air and Space Port comes from companies engaged in privately-funded commercial spaceflight research and development (R&D).
 - Test, manufacturing, development

Spaceport Activities – Test, Manufacturing, Development

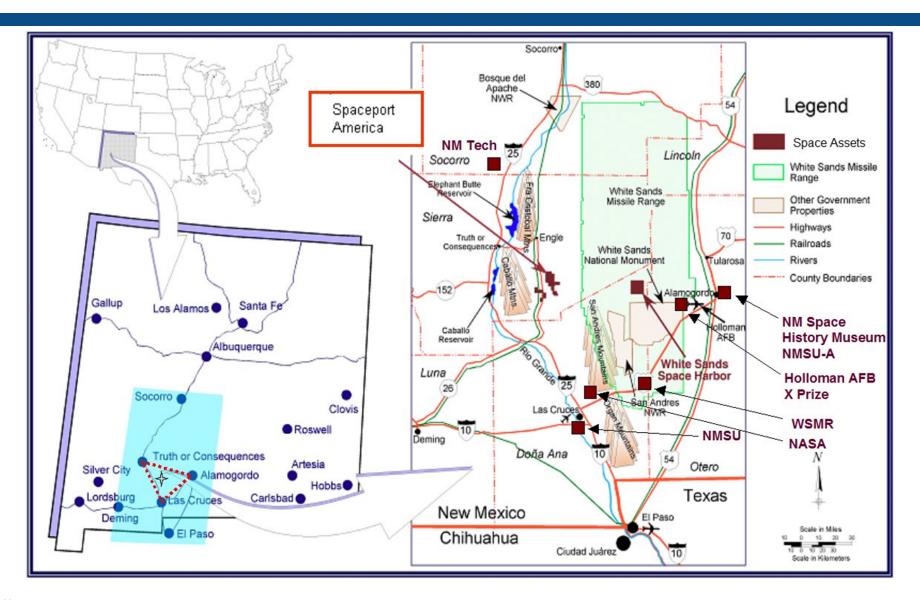


Mid-Atlantic Regional Spaceport (MARS), Wallops Island, VA

MARS- Background

- Located within NASA Wallops Island Flight Center
 - Reimbursable Space Act Agreement with NASA permitted use of land with launch pads
- Managed and developed by Virginia Commercial Space Flight Authority (VCSFA) "Virginia Space"; license 1997
- Approved for vertical launch to orbit
- Developed 2 launch pads
 - MARS Pad 0A is a Mid-Class Launch Facility (MCLF) – Orbital ATK Antares
 - MARS Pad 0B is a Small-Class Launch Facility (SCLF)

MARS Business Model


- Operate on government land with mix of NASA and Virginia Space assets
- Two launch pads for commercial vertical launch low cost access to space
- Range services, ground and flight safety, launch vehicle flight certificates
- Facilities logistic support
 - Scheduling, maintenance, and inspection to ensure optimal accomplishment of ground processing and launch.
 - Provision of supplies, commodities, and consumables to support mission operations.
- Revenues derived from launch fees and services
- Initial infrastructure costs (1995-2003) \$4.9M
- Funding sources: Virginia Space; State of Virginia; Federal

Spaceport America

Spaceport America

Changing Business Model

- +\$200 million spaceport horizontal and vertical launch
 - Anchor tenant Virgin Galactic for space tourism
 - Other business
 - SpaceX tenant
 - UP Aerospace Suborbital vertical launches
 - Fly/lease/build
 - Events space
 - Tours
- Projected 2017 revenues
 - Virgin Galactic lease and user fees (\$1.6M)
 - Other aerospace customers (\$.7M)
 - Other, incl. special events, tourism, merchandising (\$1.8M)
 - New Mexico General Fund (\$2.2M)

Spaceport Business Model Summary

	Cecil Spaceport	Mojave Air and Space Port	MARS	Spaceport America
Launch type	Horizontal	Horizontal	Vertical	Horizontal and vertical
Purpose	"Airport" for space	Test, manufacturing, etc.	Launch – low cost access	Space tourism
Infrastructure	GA airport; formerly naval airfield	GA airport; formerly military field	NASA property	Greenfield
Initial infrastructure costs	\$88.3M est.	?	\$4.9M	>\$200M
Revenues	Launch/user fees, FBO-type services; lease fees	Lease fees, projects, services	Launch fees and related services	Lease and user fees; services; tourism

Spaceport Business Model Summary

Generalities

- Airports (GA and commercial), spaceport greenfield (port authority, private), and non-government spaceport on government land/assets.
- Business model drivers are inter-related.
- Least costly model involves land/property agreements with NASA/government
 - SpaceX 20 Year Property Agreement with NASA Kennedy Space Center for Launch Complex 39A

Revenue sources

- Lease (hangars, payload processing facilities, training facilities, test facilities)
- Launch, user, operations fees
- Services, including "FBO" type services (maintenance, sale of fuel, propellants, oxidizers), ground and flight safety, vehicle certifications, logistics
- Other revenues (tourism, events, etc.)

Concluding Remarks

- Challenges
 - Time requirements for spaceport infrastructure development
 - Time and financial requirements for spaceport licensing application
 - Spaceports highly competitive
 - Loss of anchor tenant or lack of focus/purpose
- Positives outweigh the negatives in many cases due to expected return on investment (ROI).
- Both private investors and government entities are increasingly looking to commercial space transportation as the new 6th mode of transportation.

Thank you.

COLLEGE OF BUSINESS

The Business of Flight*

Backup Slides

COLLEGE OF BUSINESS

The Business of Flight®

Total Orbital Launches in 2015

Country/Region	Civil	Military	Commercial	Total
Russia	14	7	5	26
USA	4	8	8	20
China	12	7	0	19
Europe	5	0	6	11
India	3	0	2	5
Japan	1	2	1	4
Iran	1	0	0	1
TOTALS	40	24	22	86

Table 8. Total orbital launches in 2015 by country and type.

Source: FAA The Annual Compendium of Commercial Space Transportation, 2016

2015 Estimated Revenues for Commercial Launches

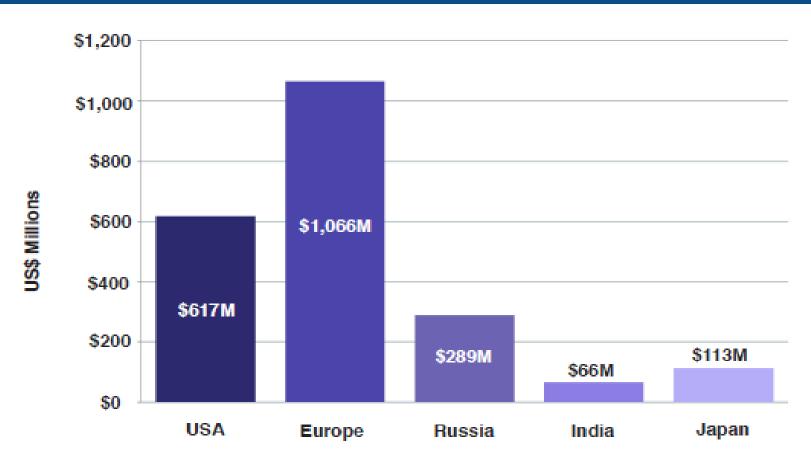


Figure 7. 2015 estimated revenues for commercial launches by country of service provider.

Source: FAA The Annual Compendium of Commercial Space Transportation, 2016

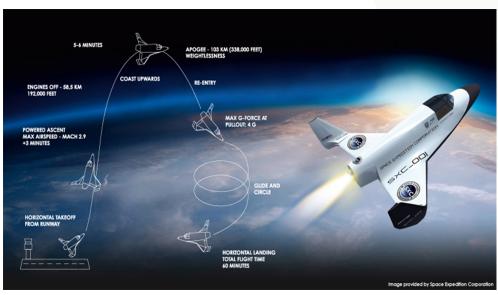
The Business of Flight®

Horizontal Reusable Launch Vehicle (RLV) Concepts

Characteristics	Concept X*	Concept Y	Concept Z
Takeoff	Horizontal	Horizontal	Horizontal
Takeoff Method	Jet powered/Turbofan engines with integrated rocket motors in single stage-to-space	Rocket powered; ignition on ground and rocket power throughout flight	Jet powered
Uses Carrier Aircraft	No	No	Yes: spacecraft separates from aircraft
Landing Method	Glide or jet powered	Glide	Glide or expendable
Suborbital/Orbital	Suborbital	Suborbital	Either
Manned or Unmanned	Manned	Manned	Either
Example	Airbus Spaceplane	XCOR Lynx	Virgin Galactic SpaceShipTwo

^{*}USA Federal Aviation Administration (FAA) designations

Horizontal RLV Concepts: Examples



Concept X: Airbus Spaceplane

Concept Y: XCOR Lynx

Concept Z: Virgin Galactic

SpaceShipTwo

Vertical Launch Vehicles

Characteristics	"Concept A"	"Concept B"
Takeoff	Vertical	Vertical takeoff and landing (VTOL)
Takeoff method	Rocket powered; capsule separation	Rocket powered; capsule separation
Uses Carrier Aircraft	No	No
Landing Method	Reusable rocket vertical return; Capsule free flight; floats down with parachutes	Reusable rocket vertical return; capsule vertical return
Suborbital/Orbital	Suborbital	Orbital
Manned/unmanned	Both	Both
Example	Blue Origin New Shepard	SpaceX Dragon with Falcon

Vertical Launch Vehicle Examples

"Concept A"

"Concept B"

