

6èmes rencontres « DROIT et ESPACE »

L'industrie spatiale face aux nouvelles dynamiques du marché mondial

New Space ? Vieux continent ? Défis et opportunités pour l'industrie spatiale en Europe

GII DENIS

Hélène HUBY

Xavier PASCO

Airbus Defence and Space R&T and Innovation management Fondation pour la Recherche Stratégique

New space? Where?

Space: Europe is able to go very far

A wind of change above atmosphere?

- Pressure on institutional budgets
- Harsh international competition
- New players
 (US, Europe, BRICS and GAFA)
- New business models (services, B2C, vertical integration)
- No level-playing field between US and Europe
- New and challenging needs (more expensive)

Challenges for large European players:

- Find new growth opportunities
- Improve competitiveness and agility
- Don't start from scratch: products, work force, customer base
- Remain clear-headed: « buzz » or real trends

The usual suspects and the new players

The usual suspects:

- A small number of large industrial players
- and their supply chain.

Their customers:

- National and European agencies,
- Satcom operators,
- MOD,
- **Export**

Small domestic market and impact on competitiveness

Pressure on prices

New profiles (David & Goliath):

- Start-ups with VC, betting on the development of very small satellites.
- The big players (GAFA) of the Web sphere, able to invest massively.

New business models:

- Scalability and agility
- Media / Advertising
- B₂C

New

countries

(BRICS)

and

(GAFA)

- Vertical integration
- Position in value chain

30 September 2015 6

The development of services: the new El Dorado?

The devil in the details...

Niche markets or global footprint

Aggregation ≠ "fit for purpose"

Few anchor tenancies or framework contracts

Free-rider model

The user is not the customer (with funding)

Need for appropriate data policies

Fragile business cases (for PPP/PFI)

New space: Silicon valley's good old recipes

Business fundamentals...

Until now...

- Funded by governments, space agencies and large operators.
- Low Internal Rate of Return (IRR).
- Low production rate (typically 10 satellites or launcher produced per year)
- High cost per unit.
- Industrial scheme constrained by political decision and rules (e.g. georeturn).
- Very high reliability.
- Focus on B2B and B2G markets.

New Space?

- Venture capital and private funding.
- High IRR expected.
- High production rate (hundreds of satellites per year, dozens of launches per year).
- Low cost per unit.
- Industrial set-up optimized for mass production.
- System reliability ensured by replacement of satellites.
- Main focus on B2C markets.

Facts... and promises

New space? But old laws of physics still apply...

Access to space

Space environment

and... no pit stop

New paradigms?

New space? New orbits, new frequencies?

- Core demand: video broadcast (UHD), mobility.
- New business: M2M, inflight connectivity, etc.
- ITU coordination.
 Potential interferences.
- Affordable access to space.
- Small is beautiful but is it cheaper?
- "GEO is cool"

Innovation in space: finding the right balance...

An apparent contradiction...

- R&T/R&D and Innovation: a second nature in space activities:
 - A great deal of challenges in science and space exploration.
 - Intrinsic difficulty of problems (access to space, constraints of the space environment, reliability and life duration, performance, autonomy, etc.)
 - Relatively small size of recurrent production...
- Customers and program managers are often reluctant to use new or disruptive technologies:
 - **Technology Readiness Level**: main selection criterion for operational or critical missions.
 - Product approach: radical changes are difficult. Focus on product evolution.
 - Incremental innovation: less visible, sometimes more efficient.
- Excellence in technology remains a key success factor of space activities

Three all-electric satellites ordered in less than a year

- Electric propulsion: between product improvement and disruptive approach
 - Initial orbit raising and all on-orbit manoeuvres.
 - **Disruption**: much larger payload (x 2). Launch in lower position.
 - **Product improvement**: electric propulsion used for station-keeping for 10 years on Eurostar E3000 satellites.
 - Time from GTO to GEO orbit: 3 to 6 months

Eutelsat-172B	3 payloads: C-band (14 transponders), Ku-band (36 transponders) and a high throughput payload (1,8 Gbps)	3500 kg / 13 kW
SES-12	76 active transponders in Ku and Ka bands. 8 antennas	5300 kg / 19 kW
SES-14	2 payloads: High Throughput Satellite mission with a Digital Transparent Processor and a C and Ku-band payload. 7 antennas.	4200 kg / 16 kW

Quantum: flexible payloads, faster and cheaper design

First fully reconfigurable payload:

- Modular and scalable payload: coverage, bandwidth, power and frequency flexibility.
- More agility: changes during satellite manufacturing or after launch.

Co-innovation

- PPP contract with Eutelsat and European Space Agency.
- New payload technology developed under the ESA ARTES programme and supported by the UK Space Agency.
- New small geo satellite platform (up to 7 kW / 450 kg payloads).

The factory of the future? A new way of building satellites?

1965 – 2015 : from A1 to 1W...

- Driven by costs, large volume production (techniques inspired by Aircraft manufacturing).
- Full series production: dedicated plant located in the US
- Design and production of the first 10 satellites: Airbus Defence and Space's facilities in Toulouse.
- Impact on legacy products and future programmes.

A challenge and an opportunity:

What can we expect for the next ten years?

A persistent Earth observation system from GEO:

14 hours per day of optical imagery, video capability, moving target detection, fast response time, real time observation.

New cooperation schemes in Europe: a long way...

- Space, still a strong symbol for nations.
- Working together: a challenge...
 Cooperation: lengthy but robust process
- New space: new roles of states and agencies?
- US: from space dominance to information dominance?
- Example in Europe: Copernicus governance
 - The right balance between national and shared/collective assets? Shared ownership and concept of operation.
 - Various management procedures at national levels.
 - Different (but co-existing) technical approaches with impact on governance and usage policies (e.g. data policy for earth observation).
 - Coherence between complexity of the decision-making and private investment rules ROI, IRR).
 - Earth Observation satellites: the challenge of customer demand aggregation from a fragmented and heterogeneous users' base.

Game of Thrones: and the winner is...

dual³

- New dimensions of dual use:
 - Public / Private.
 - Civilian / Military.
 - National sovereignty / Multinational organizations
- Fast evolution of technology and new business models...
- ... but many obstacles at governance level:
 - Hamper innovation in collective solutions.
 - Slow decision-making:
 a threat for large public initiatives.
 - Budget constraints can become an opportunity.
 - Often black or white options
 (e.g. data policy). Nuances of grey are more complex but often more sustainable.

Choose your winner and don't forget New Earth...

Questions?

Gil DENIS

Airbus Defence and Space R&T and innovation management

gil.denis@airbus.com

